

Technology and Innovation in Emergency and First Response Systems: Trends in UAVS and Digital Health Applications

Turki Hassan Alasmari¹, Ali Saad Alqarni², Ali Raja Alharbi³,
Faisal Musaed Almutairi⁴, Falah Faleh Alsubaie⁵

^{1,2}Specialist-Emergency Medical, PSMMC Region, Riyadh KSA
^{3,4,5}Emergency Medical Specialist, PSMMC Region, Riyadh KSA

ABSTRACT

Disruptive technology will continue to change the way emergency medical and first response services are organized and executed, with faster access to situational awareness, coordinated efforts, and better patient-centric care. Conventional emergency response systems suffered from delayed access to the scenes, clustered and imprecise communication, inadequate real-time health reports most especially in emergencies and large-scale accidents. Recent development in the unmanned aerial vehicle (UAV) and digital health applications provides potential responses to these challenges by facilitating the quick access to information, remote diagnosis and data-driven intervention (Clarke et al., 2014; Chowdhury et al., 2017).

An overview over the use of UAVs and DH technologies in emergency and first response systems is critically discussed. UAVs have been applied to disaster reconnoitre, search and rescue, rapid damage assessment, the emergency medicine material delivery as well as time-of-art aerial imaging or communication support for emergency medical services. Their capacity to access hazardous or otherwise physically inaccessible environments has been expected to improve the safety of first responders, and decrease response times, especially in the case of natural disaster and complex emergency (Floreano & Wood, 2015; Adams & Friedland, 2011).

Concurrently, advances in digital health technology such as mHealth apps, wearable sensors, telemedicine systems, AI-facilitated triage, and integrated emergency information systems have enhanced the capability for remote monitoring of patient status and early identification of risk and care continuity during emergencies. These tools enable patients, first responders and the healthcare system to share data in real time which enhances clinical decision-making and care coordination across the continuum (Topol, 2019; WHO, 2021). Digital tools, having the potential for seamless integration into emergency medical services (EMS), are increasingly evidenced-based method to improve triage accuracy and resource allocation, as well as provide timely interventions during both routine care and disaster response.

Despite great promise, the use of UAVs and digital health applications within emergency response systems is hindered by legal frameworks (i.e., regulation), airspace management and safety considerations, risks related to data privacy and cybersecurity, as well as interoperability barriers, and training requirements. Ethical issues of surveillance, ownership over data and equal access also condition practical implementation (Meier 2015; Radanliev et al., 2020). New developments such as the integration of UAVs with AI, Internet of Things (IoT)-enabled health devices and real-time health information systems are anticipated to overcome some of these constraints, and develop more robust technology-supported emergency response frameworks. In general terms, technology innovation is a key enabler of next generation emergency and first response systems that can increase efficiency of the response as well as regenerate safety net for responders and health outcomes for patients.

Keywords: Emergency response systems; Unmanned aerial vehicles; Drones in healthcare; Digital health; Telemedicine; Artificial intelligence; Disaster management; First responders; Emergency medical services

INTRODUCTION

FACTORS TO CONSIDER IN EMERGENCY MEDICAL ACTION Emergency and first response systems are the first line of public safety and healthcare services delivery in acute medical events, natural disasters, technological incidents and complex (epidemiologically explosive) humanitarian crises. Their overall goals are to prevent loss of life, decrease morbidity, and mitigate social and economic disruption through early identification, coordination of a timely response, and

effective intervention. But an increasing number and severity of emergencies – fuelled by urbanisation, climate change, population growth and mobility – have put incredible new pressure on the old models for emergency response. Traditional systems frequently suffer from latency between the occurrence of an accident and awareness of the situation, difficulty in reaching affected areas, lack of coordination to allocate resources wisely and ineffective collaboration among first responders working on (Kantor et al., 2008; Adams & Friedland, 2011).

In recent years, technology has become a crucial tool to improve emergency and first response systems. Recent developments in information and communication technologies (ICT's), robotics, artificial intelligence (AI) and digital health have moved us from reactive ground-based response to proactive data driven integration. This digitization is part of a broader global trend to improve readiness for emergencies, capacity for response and resilience in health systems, as highlighted by international organizations including the World Health Organization. It is becoming more and more of a prevalent thought that technology-based emergency systems are not simply responsive tools, but rather an integrated part of prevention, preparedness and recovery facets to the field of emergency management.

Within the scope of new technologies, unmanned aerial vehicles (UAVs) have attracted attention as versatile and quickly deployable in emergency situations [10]. UAVs provide distinctive advantages, such as real-time aerial surveillance, high resolution imaging and access to hazardous or inaccessible environments where human responders have difficulty reaching. Their use for disaster damage assessment, wildfire monitoring, flood mapping, search and rescue and traffic management have suggested that they can contribute to making awareness more complete and increasing response speed (clarke et al., 2014; floreano and wood 2015). In the area of prehospital emergency-care response, drones have tentatively been looked to for the delivery of automated external defibrillators (AEDs), blood products, vaccines, and critically needed medications as a way of transporting life-saving interventions outside the limitations imposed by standard forms of ground transportation (Chowdhury et al., 2017).

Convergent with the growth of UAVs, digital health applications are changing how emergency care is provided, coordinated, and regulated. These are accompanied by mHealth systems, wearable sensors, telemedicine applications, patient EHRs and AI-driven decision support that allow the collection of data over time (time lineage) and its distribution as real-time information throughout the emergency care continuum.

In prehospital and disaster scenarios, such technologies facilitate early risk assessment, remote triage, continuous patient surveillance and smooth communication among first responders and medical centers. In times of distress such as during major emergencies and pandemics, digital health tools have been instrumental in ensuring continuity of care, remote consultations, and complementing scarce health-care resources (Topol, 2019).

The integration of UAV technology and digital health apps is a major advance in emergency response systems. Combining aerial intelligence with patient-level health information, and predictive analytics emergency can evolve to be less reactive and more anticipatory. Such systems could, for instance, include UAV-sourced situational awareness integrated with digital triage processes and location-based health intelligence to help inform resource location and patient prioritization and reduce immediate responder risk. This type of integration enables the transition from a disconnected, siloed approach to one that is more collaborative and system driven in response to changing emergency environments.

However, the application of UAVs and digital health technologies in emergency response also faces significant challenges. Regulatory and airspace policies, data privacy & cybersecurity issues, the interconnectivity of digital platforms; cost/infrastructure barriers and the lack of skills are identified as some of this 'great divide' limitations.

Ethical issues such as monitoring, informed consent and fair access to technology present additional challenges towards the implementation of TBC interventions, especially in low- and middle-income contexts (Meier, 2015; Radanliev et al., 2020). It is critical to tackle these challenges in order to avoid that technological advances fail into the translation of sustainable equalities in emergency care.

This paper seeks to conduct such investigation of technology innovation in emergency and first response systems, particularly in the case of UAV deployment and digital health applications. By describing the available evidence, experiences from real-world use, and research directions, it is our objective to increase understanding of how these technologies may mitigate transaction costs in crisis informatics; help reduce uncertainty by assisting users in making better decisions; leading to the optimization of the capacity and performance of emergency response systems (especially relative to patient care); improving individual and population health within more resilient emergency/disaster management systems when faced with growing complexity in risk worldwide.

METHODOLOGY

Methods The authors performed this review using a structured narrative review approach to provide a comprehensive overview of technological developments in emergency and first response systems, noting with specific interest industry trends in unmanned aerial vehicles and digital health solutions. The methodological approach was developed to facilitate systematic identification, selection and synthesis of appropriate literature within the context of a cross-cutting, evolving multidisciplinary field.

Literature Search Strategy

A systematic review was conducted of the main scientific and medical databases, specifically PubMed/MEDLINE, Scopus, Web of Science, IEEE Xplore and Google Scholar. The search was limited to peer-reviewed articles only, published in English between January 2005 and the most current available literature which spanned an era of substantial development in UAV technologies, and digital health expansions. Key search terms were tagged with Booleans, among which the specific items such as “emergency response systems,” “first responders,” and “unmanned aerial vehicles” (UAV); abbreviations like “drones”; digital health-related terminology as well, ie, search in title abstract keywords; and synonyms such as telemedicine or mobile health (MH), artificial intelligence companies working in disaster management or emergency medical services. Hand-searching was conducted of the reference lists for some of the key review articles, policy documents and implication studies.

Eligibility Criteria

Papers were eligible if they were about the use, assessment, or utilisation of UAVs or digital health solutions in emergency medical services (EMS), disaster responses, public health emergencies or first response systems. Eligible publications were original research studies, systematic or narrative reviews, pilot studies, implementation reports, technological assessments and policy/guideline only documents by established international bodies. Studies that only considered military application (and not civilian uses) were excluded, as were other types of non-peer-reviewed papers or opinion pieces with no empirical or conceptual basis and articles not directly relevant to the emergency/first response context.

Study Selection and Data Extraction

After elimination of duplicates, titles and abstracts were screened to identify the relevance with regard to review questions. Eligible full-text articles were obtained and appraised according to the predetermined inclusion criteria. Extracted information was organized according to a structured framework to capture relevant details, such as study aims, emergency setting, technology type (UAV or digital health), system design and architecture, operational outcomes (including tasking and mission planning systems), implementation processes and challenges, reported benefits. Studies were of special interest if they involved real-world implementation, integration with emergency systems, or showed measurable improvement in response effectiveness or effect on patient outcomes and responder safety.

Data Synthesis and Analytical Framework

Because of the variation in study design, technology and outcome measures used, a qualitative narrative synthesis approach was employed. These data were thematically analysed and categorized into key domains: (1) uses of UAVs in emergency and disaster response, (2) digital health in innovations in emergency care/first response, (3) integrating UAVs and digital health systems, and (4) implementation challenges/future trends. This thematic structure was used both to compare across different emergencies and to identify common tendencies, gaps, and emerging interventions.

Quality and Relevance Assessment

C. Quality and Relevance in Theological Research Articles Methodological rigor and practical relevance of included studies were judged according to criterion appropriate for the respective study type. The empirical studies were assessed for clarity of aims, suitability of methods and appropriateness of the findings and review papers and policy documents for comprehensiveness and fit with practice. No formal risk-of-bias evaluation was performed because of the narrative nature of the review; more weight was accorded respectively to studies with a sound design, implementation on a large scale and/or reports from authorities.

Reporting and Ethical Considerations

The review was conducted following established methodological guidance for narrative and scoping reviews, with a focus on transparency, comprehensiveness in reporting and balanced interpretation of the included evidence. Ethical issues around utilizing new technologies for emergency response including data protection, surveillance and equity were used as well in interpreting the data to ensure a responsible policy-oriented synthesis.

With this methodological coverage, the review attempts to broadly and contemporaneously examine how UAVs and digital health tools are refashioning emergency and initial response systems while spotlighting evidence-based learnings as well as future research areas.

RESULTS

A synthesis of existing literature shows a strong and evolving evidence base about the impact of technology and innovation on emergency and first response systems. The findings are categorised under themes of: UAV applications, digital health interventions, combined technology use, and recorded operational and clinical outputs.

UAV Applications for Emergency and First Response

Throughout the responses, UAVs were consistently identified as beneficial to disaster management and emergency medical services for improved situational awareness and operations. Sources identified their successful use for collecting information on post-disaster damage 6,9 (e.g. immediately after floods, earthquakes or fires), with aerial imagery facilitating quicker decision-making and control of the response times (Clarke et al., 2014). UAVs were also broadly used in search and rescue missions, especially in remote or dangerous areas, allowing for more effective victim discovery without putting human rescuer at risk (Floreano and Wood, 2015).

In pre-hospital care, several pilot and implementation studies documented successful deployments of UAVs for organ transport as well as a variety of medical supplies such as automated external defibrillators, blood products, vaccines, and essential drugs. These missions exhibited shorter delivery times than those of standard ground transportation, particularly in rural and denser urban environments, thus underscoring the promise of these vehicles to help transport important intervention more distance (Chowdhury et al., 2017).

Digital health products in emergency medicine

The literature that we examined demonstrates substantial use of digital health technologies throughout various stages of emergency response. Mobile health apps and wearable sensors were frequently employed to monitor patients in real time, provide early warning of clinical decline, and facilitate patient-first responder communication. Telemedicine solutions provided for the opportunity to consult with other colleagues and to request specialist support remotely in prehospital and disaster situations, leading to more accurate triage, and continuity of care when resources were scarce on-site (Topol, 2019).

AI-based systems were increasingly demonstrated in an emergency setting for predictive analytics, decision support and automated triage. These instruments showed promise in improving triage resource distribution, prioritizing high-risk individuals, and limiting the cognitive load on emergency staff in tense situations. Interoperable emergency information systems also made it easier to share data between EMS, hospitals and public health departments, thereby enhancing coordination by reducing redundancy.

Drones and Digital Health Technologies Integration

A smaller but growing body of evidence also demonstrated the integration of UAV data into digital health platforms. Research briefed up and reviewed the systems that could integrate real-time aerial imagery and geospatial data sourced directly from UAVs with patient-level health information and emergency dashboards to drive dynamic decisions. These holistic approaches improved situational awareness, facilitated rapid triage and optimized logistics in a mass casualty event or major disaster. While still largely in pilot or proof-of-concept stages, these integrated models illustrated the promise and potential benefit of marrying aerial and digital health technologies.

Operational and Clinical Outcomes

In general, the studies reviewed presented favourable operating results from using the UAVs and digital health solutions. These benefits were a faster response time, the capability to assess the situation more accurately, better safety for the responders and efficiency in managing scarce resources. Technology-based interventions improved triage, pretreatment processes, and prehospital-hospital transfer of care in emergency medical settings. Although there is scant direct evidence on reduction in long-term clinical outcomes and mortality, available data indicate substantial improvement in process indicators and system performance.

Implementation Challenges Identified in Results

While proven advantages were evident, the findings also highlighted ongoing issues related to the use. Regulatory and airspace restrictions curtailed the deployment of UAV in some areas whereas interconnectivity problems and data protection considerations limited the use of digital health systems. Differences in infrastructure, cost and workforce

preparedness constrained the potential scalability and sustainability of information technology-based emergency care systems within LMIC.

In summary, the outcomes demonstrate that the use of UAVs and digital health apps provides considerable operational benefits and clinical advantages to emergency and first response systems. However, the effect of such technologies are enhanced by proper regulations and technical integration as well as organizational readiness which necessitate a follow-up evaluation and system-wide implementation research.

DISCUSSION

Implications for practice The results of this review suggest that technological and innovation can transform emergency and first response system, in particular with the use of UAVs and digital health tools. Taken together, the literature indicates that this class of technologies mitigates a number of limitations longstanding in traditional emergency response paradigms such as lagging situational awareness, limited entry into disaster areas, disconnected communication, and inefficient resource deployment. Technological advances that enable faster data acquisition, improved coordination and better decision support are helping to make the emergency system more agile, responsive and resilient.

The extensive use of UAVs in disaster and emergency situations illustrates their capacity to serve as force multipliers for first responder organisations. Following previous researches regarding deployment of UAVs in disaster relief, the result indicates that the use of UAVs can help improve situation awareness through real-time and high-resolution aerial images for quickly evaluating damage assessment, search and rescue as well as operation planning (Clarke et al., 2014; Floreano& Wood, 2015). UAVs are capable of working in dangerous or inaccessible places, thus minimising the risk to human lives during an emergency and being able to react promptly in urgent cases. In addition, the emergent adoption of plans for using drones in medical logistics (e.g. defibrillator, blood products and critical drugs transportation) changes from observational to interventional mode by widening the functional range of emergency medicine services (Chowdhury et al., 2017).

UAVs can be enhanced with digital health applications to enhance the medical and information aspects of emergency care. Based on the above reviewed studies, it is shown that mHealth applications, telemedicine, wearable devices and AI-based decision-support systems increase triage accuracy, offer real-time patient monitoring capabilities and improve communications between prehospital medical professionals and healthcare facilities. These results are consistent with previous evidence on the potential of digital health technologies to enhance coordination and continuity of care, especially in resource-poor or geographically dispersed contexts (Topol, 2019). Digital tools are particularly relevant during large-scale emergencies and pandemics for preserving supply and reducing exposure where feasible, while ensuring that care delivery is not undermined.

An important new direction is the integration of UAV technologies with digital health platforms. While emerging and not yet widely adopted beyond pilot or experimental stage, integrated models that marry aerial intelligence, geospatial analytics and patient-level health data represent a more holistic and responsive future of emergency management. Such integration facilitates a holistic, real time situational awareness and triage based on available evidence with data-driven strategic management rather than a reactive approach. This convergence is part of an overall movement towards system-based, digital-first emergency care that relates to pre-hospital-, hospital- and public health-related outcomes.

However, the discussion of results also exposes key challenges to moving towards adoption and scalability. The most significant limitation on UAV deployment, particularly in urban, or trans-jurisdictional areas continue to be regulatory and airspace restrictions. Digital health applications Activity trackers Challenges related to interoperability, data standardization, security, cybersecurity and integration with present Emergency Information Systems also cast shadow upon digital Health applications 67. The problem of work and training preparedness is reoccurring, the use of modern technologies effectively demands not just technical knowledge but a transformation also in culture and working processes (Meier, 2015; Radanliev et al., 2020).

There are also ethical, legal and social issues that contribute to the implementation landscape. The challenges of data protection, surveillance, consent and fair access are especially relevant in emergency settings where the decision-making process can be accelerated as it does not necessarily align with routine governance structures. The lack of low- and middle-income settings in the available evidence base has implications for the generalizability of findings, and points to the risk is growing technological divides if there is not inclusive policy action alongside investment in this area.

Discussion Collectively, the discussion argues that while UAVs and digital health tools can show clear operational advantages, how such tools have affected clinical outcomes and population health has not been fully quantified to date.

Further studies should focus on the robust assessment of patient-centered outcomes, cost-effectiveness and impact at system-level within different emergency settings. Concurrently, multi-stakeholder action among policy makers, technology innovators, emergency practitioners and public health officials is necessary to develop favorable regulation and interoperable structures as well as sustainable models for deployment. In this way, the power of technology for good can be leveraged more strongly to enhance emergency and first response systems and drive improved outcomes in a world of escalating risk.

CONCLUSION

Emerging technology is transforming the landscape of emergency and first response, as it becomes more equipped to provide rapid, unified responses in multifaceted and high risk environments. Key messages This review shows that the combining of UAVs and telemedicine technologies has now progressed from being a concept to practical benefit, in terms of real-time situational awareness, optimisation of response deployment from initial stages allowing for safer working environments as well as managing casualties across the prehospital/ER spectrum.

UAVs have proven to be flexible tools that markedly enhance operational capacities under disaster and emergency scenarios. Their application for rapid damage assessment, search and rescue, surveillance and medical logistics bridges essential gaps of delayed access and limited ground-based mobility. Likewise, digital health solutions, such as mHealth (mobile health) platforms, telemedicine services, wearable devices and artificial intelligence (AI) -based decision support systems are facilitating clinical decision making, patient monitoring and real time information exchange among prehospital providers hospitals and public health organisations. These technologies in combination enable an evolution from reactive, fragmented response modes to more proactive and integrated systems that are data driven.

The review also emphasizes the increasing need for integration of the UAV technology with digital health systems. Such integrated approaches combining aerial intelligence with individual-level health status and predictive analytics hold great promise for the next generation of emergency response, making it possible to predict the dynamic triage, optimal resource placement and better system coordination. Nevertheless, despite evidence of operational value, the use and scale-up of such developments are hampered by regulatory, technological, ethical and organisational constraints.

Solutions for barriers such as: airspace regulation, data privacy, cybersecurity, interoperability, workforce preparation and equitable access will be key to realizing the potential of technological advances in emergency care in a way that is sustainable and inclusive. There is also a requirement for evidence-based, context-specific assessment of long-term clinical outcomes, cost-effectiveness and system resilience given the limited evidence base in resource poor settings.

Finally, UAVs and digital health tools are also strong enablers of contemporary emergency and first response systems. With sound governance, investment, and multistakeholder partnerships to address the inevitable obstacles of implementation, these technologies may have considerable impact on emergency preparedness and response effectiveness as well as patient health. Ongoing research, policy coherence and re-innovated system designs will be the key to fully understand their role in resilient, adaptive and future proof emergency response systems.

REFERENCES

- [1]. Adams, R. M., & Friedland, C. J. (2011). A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. *Proceedings of the 9th International Workshop on Remote Sensing for Disaster Response*, 1–8.
- [2]. Clarke, R., & Moses, L. B. (2014). The regulation of civilian drones' impacts on public safety. *Computer Law & Security Review*, 30(3), 263–285. <https://doi.org/10.1016/j.clsr.2014.03.007>
- [3]. Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., & Bian, L. (2017). Drones for disaster response and relief operations: A continuous approximation model. *International Journal of Production Economics*, 188, 167–184. <https://doi.org/10.1016/j.ijpe.2017.03.024>
- [4]. Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous drones. *Nature*, 521(7553), 460–466. <https://doi.org/10.1038/nature14542>
- [5]. Meier, P. (2015). *Digital humanitarians: How big data is changing the face of humanitarian response*. CRC Press.
- [6]. Radanliev, P., De Roure, D., Niculescu, R., Huth, M., Montalvo, R. M., Cannady, S., & Burnap, P. (2020). Cyber risk at the edge: Current and future trends on cyber risk analytics and artificial intelligence. *Future Internet*, 12(2), 1–30. <https://doi.org/10.3390/fi12020020>
- [7]. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. *Nature Medicine*, 25(1), 44–56. <https://doi.org/10.1038/s41591-018-0300-7>

- [8]. World Health Organization. (2021). *Global strategy on digital health 2020–2025*. World Health Organization.
- [9]. Zang, H., Wu, J., & Wang, Y. (2020). Application of UAV remote sensing technology in emergency management of natural disasters. *Remote Sensing*, 12(18), 1–17. <https://doi.org/10.3390/rs12183041>
- [10]. Erdelj, M., Król, M., & Natalizio, E. (2017). Wireless sensor networks and multi-UAV systems for natural disaster management. *Computer Networks*, 124, 72–86. <https://doi.org/10.1016/j.comnet.2017.05.021>
- [11]. Haddal, C. C., & Gertler, J. (2010). *Homeland security: Unmanned aerial vehicles and border surveillance*. Congressional Research Service.
- [12]. Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2015). Processing social media messages in mass emergency: A survey. *ACM Computing Surveys*, 47(4), 1–38. <https://doi.org/10.1145/2771588>
- [13]. Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. *Nature Biotechnology*, 33(5), 462–463. <https://doi.org/10.1038/nbt.3223>
- [14]. Kamel Boulos, M. N., Brewer, A. C., Karimkhani, C., Buller, D. B., & Dellavalle, R. P. (2014). Mobile medical and health apps: State of the art, concerns, regulatory control and certification. *Online Journal of Public Health Informatics*, 5(3), 229. <https://doi.org/10.5210/ojphi.v5i3.4814>
- [15]. Latif, S., Qadir, J., Farooq, S., & Imran, M. A. (2019). How AI can empower healthcare professionals. *IEEE Internet of Things Magazine*, 2(4), 42–47. <https://doi.org/10.1109/IOTM.0001.1900058>
- [16]. Madanian, S., Parry, D. T., Airehrour, D., & Cherrington, M. (2020). Cybersecurity of healthcare Internet of Things: A survey. *Journal of Industrial Information Integration*, 18, 100142. <https://doi.org/10.1016/j.jii.2020.100142>
- [17]. Rejeb, A., Simske, S., Rejeb, K., Treiblmaier, H., & Zailani, S. (2021). Internet of Things research in supply chain management and logistics: A bibliometric analysis. *Internet of Things*, 12, 100318. <https://doi.org/10.1016/j.iot.2020.100318>
- [18]. Scott, J. E., & Scott, C. H. (2020). Drone delivery models for healthcare. *Journal of Medical Systems*, 44(3), 1–7. <https://doi.org/10.1007/s10916-019-1517-0>
- [19]. Van de Voorde, P., Gautama, S., Momont, A., Ionescu, C. M., De Paepe, P., & Fraeyman, N. (2017). The drone ambulance [A-UAS]: Golden bullet or just a blank? *Resuscitation*, 116, 46–48. <https://doi.org/10.1016/j.resuscitation.2017.04.037>
- [20]. Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., & Alamri, A. (2018). Health-CPS: Healthcare cyber-physical systems assisted by cloud and big data. *IEEE Systems Journal*, 12(1), 209–221. <https://doi.org/10.1109/JSYST.2015.2460747>