

Advances in Drug Delivery Systems: A Review of Recent Developments

Alwaleed Salem Alhenaki¹, Faisal Bader Al-Otaibi², Omar Hamad Mohammad Asiri³,
Ibrahim Yassin Al Alalwi⁴, Majed Hazam Al Qahtani⁵

^{1,3,5}Pharmacist, Prince Sultan Military Medical City, Riyadh, KSA

²Pharmacy Technician, Prince Sultan Military Medical City, Riyadh, KSA

⁴Laboratory Technician, Prince Sultan Military Medical City, Riyadh KSA

ABSTRACT

Drug delivery systems (DDS) represent an essential element of the modern pharmaceutical sciences, since they directly affect the safety, efficacy, and therapy results of medication compounds. Traditional types of delivery systems, oral and injectable formulations, are often faced with constraints such as poor bioavailability, rapid degradation, lack of specificity, frequent dosing timetable, and unpleasant adverse effects. It is these challenges that have prompted the development of superior DDS that seek to maximize the therapeutic efficacy and at the same time, therefore, reduce the toxicity and improve patient compliance. The recent developments in the fields of materials science, nanotechnology, biotechnology, and molecular biology have enabled the development of new systems that have the potential to provide controlled, targeted, and sustained drug release. Nanoparticles such as liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles and micelles are seen to exhibit better drug loading capabilities, better pharmacokinetics and site-specific targeting. Additionally, stimulus-sensitive delivery mechanisms which use ligands, antibodies, or environmental signals like pH, temperature, or enzymatic enactment have also initiated precision and customized medicine. Also, the use of controlled and sustained release platforms, alternative route of administration, including, but not limited to, transdermal, ocular, pulmonary, and implantable systems have worked towards increased patient adherence and therapeutic response. Even with such developments, there are issues that are continuing to be a problem in areas of scalability, regulatory acceptance, long-term safety and cost-effectiveness. The current review provides the synthesis of recent advances in DDS with the perspective of emerging technologies, new carriers, and approaches to enhance drug targeting, release control, and clinical outcome, thus highlighting the future perspective of advanced formulations of drug delivery in healthcare worldwide.

Keywords: Drug delivery systems, Nanotechnology, Targeted delivery, Controlled release, Stimuli-responsive systems, Smart drug delivery, Nanocarriers, Precision medicine, Advanced therapeutics, Personalized therapy

INTRODUCTION

The drug delivery systems represent one of the central factors in the modern pharmaceutical sciences as they are the decisive factor of the safety, effectiveness, and therapeutic value of the medicinal products [1]. Traditional modalities, such as oral or injectable formulations, are often faced with significant constraints, such as poor bioavailability, quick drug breakdown, non-specific localization, frequent dosing schedules, and undesired adverse effects [2]. Such limitations have consequently prompted worldwide academic research on the formulation of advanced drug delivery systems (DDS) that can optimize the therapeutic efficacy and at the same time reduce toxicity and increase patient compliance [3]. In the last few decades, groundbreaking developments have been made in the field of designing and implementing new technologies in drug delivery [4]. Materials science, nanotechnology, biotechnology and molecular biology progress have enabled the development of novel systems that can be used to perform controlled, targeted and sustained drug delivery [5]. Modern DDS do not just deliver therapeutics to the site of action, but also control the rate and duration of release, protect therapeutic pharmaceutical agents against degradation, and enhance their solubility and stability [6]. Consequently, these systems have transformed the treatment of various chronic and life-threatening diseases, such as cancer, heart diseases, brain disorders, and infectious diseases [7]. Nanotechnology DDS is one of the most significant developments in this field [8]. It has been demonstrated that nanocarriers like liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles and micelles have better drug loading properties, improved pharmacokinetics and site-specific targeting properties [9]. Such carriers help therapeutics overcome biological barriers and selectively accumulate in diseased tissue to reduce systemic toxicity [10]. Correspondingly, specific delivery systems with the use of ligands, antibodies, or materials stimuli-responsive have also shown positive results in the quest of precision medicine and personalized therapy [11]. The other development that has aroused and is of relevance in drug delivery studies is the introduction of controlled and

sustained release systems [12]. The therapeutic drug concentrations sustained by these platforms over a long period of time lower the dose frequency and enhance patient compliance. Smart DDS responsive to internal or external conditions, e.g. pH, temperature, enzymatic activity or magnetic fields, have further increased the range of delivery technologies through on-demand delivery to target pathological locations [13]. Furthermore, development of transdermal, ocular, pulmonary, and implantable delivery systems have provided alternative routes of administration thus increasing therapeutic efficacy and patient comfort [14]. It is against these developments that a number of obstacles still exist in the clinical translation of sophisticated DDS, such as scalability, regulatory approval, safety in the long-term, and cost-effectiveness. On-going research is thus essential in perfecting these technologies and narrowing the gap between laboratory research and clinical practice [15]. The current review attempts to give an in-depth overview of recent advances in drug delivery systems with a focus on the emergent technologies, novel carriers and novel methods developed to improve the process of drug targeting, control of release and therapeutic efficacy [16]. Summarizing the existing trends and developments, this article highlights the prospects of developed DDS in forming the future of pharmaceutical treatment and enhancing the health outcomes in the world [17].

Review

1. Traditional Drug Delivery Systems and their shortcomings.

The traditional forms of drug delivery, including oral doses, capsules, syrups, and injectable solutions, have been widely used over a number of decades, mainly due to the ease of operation and the economical nature of those delivery modalities [18]. However, these systems also often appear with the disadvantages of poor bioavailability, inadequate drug solubility, randomized distribution, rapid pharmacokinetic clearance, and the need to repeat dosing [19]. These restrictions are likely to reduce the effectiveness of the therapy and increase the rate of negative adverse drug reactions. Therefore, the need to overcome these shortcomings has driven the emergence of novel advanced systems of drug delivery that can provide a fine control of drug release kinetics and site-specific targeting [20].

Table 1: Table highlights limitations of traditional drug delivery systems.

Traditional Drug Delivery System	Advantages	Major Shortcomings
Oral dosage forms (tablets, capsules)	Easy administration, cost-effective, good patient acceptance	Poor bioavailability, low solubility of drugs, first-pass metabolism, frequent dosing
Liquid oral formulations (syrups)	Suitable for pediatric and geriatric patients, easy swallowing	Stability issues, inaccurate dosing, poor bioavailability
Injectable solutions	Rapid onset of action, complete bioavailability	Invasive, pain at injection site, risk of infection, rapid drug clearance
Conventional formulations (general)	Simple formulation, economical, well-established	Non-specific drug distribution, fluctuating plasma drug levels, increased adverse effects
Repeated dosing regimens	Maintains therapeutic effect temporarily	Poor patient compliance, higher risk of toxicity

2. Drug Delivery Systems based on Nanotechnology.

The introduction of nanotechnology has significantly changed the paradigm of drug delivery, and it has enabled the development of nanoscale carriers that provide therapeutics with an increased level of accuracy [21]. Nanocarriers which include liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers and nanomicelles have attract a lot of academic interest because of their ability to increase the solubility, stability and bioavailability of drugs [22]. These nanosystems help protection of therapeutic agents against enzymatic degradation and allow them to deliver their compounds to specific tissues or cellular compartmentalization [23]. In the oncology field, nanocarriers have proved to hold significant potentials in terms of enhancing the level of targeting of tumours, both passively and actively, to reduce systemic toxicity, thus providing a way of promoting a better therapeutic effect [24].

Table 2: Table summarizes nanotechnology-based drug delivery systems.

Nanocarrier Type	Key Features	Advantages in Drug Delivery	Major Applications
Liposomes	Phospholipid bilayer vesicles	Improve drug solubility and stability, reduce toxicity, enable targeted delivery	Cancer therapy, antimicrobial delivery
Polymeric nanoparticles	Biodegradable polymer-based carriers	Controlled drug release, enhanced bioavailability, protection from degradation	Oncology, chronic disease management
Solid lipid nanoparticles	Lipid-based nanosystems	High drug loading, improved stability, reduced cytotoxicity	Cancer, oral and topical delivery
Dendrimers	Highly branched polymer structures	Precise targeting, high drug encapsulation, improved cellular uptake	Gene delivery, cancer treatment
Nanomicelles	Self-assembled amphiphilic structures	Enhanced solubility of hydrophobic drugs, prolonged circulation	Oncology, targeted drug delivery

3. Specific Drug Delivery Systems.

Specific drug delivery systems are designed to specifically target the pharmacologic agents to the pathologic tissues with minimal exposure to the non-pathologic cells. The approach improves the effectiveness of therapy and counteracts negative outcomes [25]. Active targeting uses ligands such as antibodies, peptides or receptor molecules which are bound to specific cellular markers [26]. Passive targeting on the other hand relies on physiological effects like increase in permeability and retention [27]. There has been recent advancements in receptor based and antibody based targeting leading to significant improvement in the management of chronic diseases, including cancer and autoimmune diseases [28].

Table 3: Table outlines specific and targeted drug delivery systems.

Targeting Type	Mechanism	Key Features	Applications
Active Targeting	Ligands (antibodies, peptides, receptor molecules) bind to specific cellular markers	Directs drugs to diseased cells, reduces exposure to healthy cells	Cancer therapy, autoimmune diseases, chronic disease management
Passive Targeting	Exploits physiological effects (e.g., enhanced permeability and retention)	Accumulates drugs in pathological tissues without specific ligand	Tumor targeting, inflammatory disorders

4. Controlled and Sustained Release Drug Delivery Systems.

Controlled and sustained-release systems are designed to sustain drug levels on a therapeutic range in extended periods of time [29]. They decrease the dosing rates and improve patient compliance. These systems are important in the use of polymers, which control the release kinetics by diffusion, degradation, or swelling. Biodegradable and biocompatible polymers have enabled the development of implants, microspheres and depot formulations that are capable of providing prolonged therapeutic effects in the treatment of chronic diseases [30].

5. Smart Drug Delivery Systems Stimulus-Responsive.

Stimuli-responsive (smart) drug delivery systems are an advanced format, wherein release of a drug is triggered by a particular endogenous or exogenous signal- such as pH, temperature, enzymatic activity, light, or magnetic field. These systems can be site specific, on-demand drug release, which is useful in augmenting therapeutic precision in oncologic and gastrointestinal therapy, but temperature responsive and enzyme responsive systems have been shown to have potential in inflammatory and metabolic disorders. Such advances justify the increasing need of customized therapeutics [31].

Table 4: Table summarizes stimuli-responsive smart drug delivery systems.

Stimulus Type	Mechanism of Drug Release	Key Features	Applications
pH-responsive	Drug release triggered by changes in pH	Site-specific release, precise targeting	Cancer therapy, gastrointestinal diseases
Temperature-responsive	Drug release triggered by temperature changes	On-demand release, controlled dosing	Inflammatory and metabolic disorders
Enzyme-responsive	Drug release activated by specific enzymes	Targeted action, minimized side effects	Inflammatory and metabolic disorders
Light-responsive	Drug release triggered by light exposure	External control of drug release	Precision cancer therapy, localized treatment
Magnetic-responsive	Drug release controlled by magnetic fields	Non-invasive targeting, on-demand release	Tumor therapy, site-specific drug delivery

6. New Routes of Drug Delivery.

The recent innovations also include alternative routes of administration, which are designed to improve the treatment of patients and comfort them [32]. Transdermal modalities release in a sustained way and avoid first-pass metabolism. Pulmonary delivery provides fast-action and is effective in respiratory diseases and systemic therapeutics. Ocular, nasal and implantable systems have further extended therapeutic choices by making it easier to administer drugs through the usage of localized and controlled delivery [33].

7. Difficulties and Future Outlooks.

In spite of its substantive progress, a number of challenges were observed to further develop and clinically translate sophisticated drug delivery systems. The relating concerns on toxicity, mass production, regulatory exemption, stability and cost-effectiveness still hinder extensive adoption [34]. The further research ought to focus on the optimization of carrier substrates, the improvement of target efficiency, and long-term safety. It is expected that the design and implementation of next-generation drug delivery technologies will continue to improve by the integration of artificial intelligence, novel biomaterials, and personalized medicine [35].

Table 5: Table summarizes challenges and future directions in DDS.

Category	Challenges / Concerns	Future Directions / Outlook
Toxicity	Potential adverse effects of carriers or nanoparticles	Development of safer, biocompatible materials
Mass Production	Difficulty in large-scale manufacturing	Scalable and reproducible production techniques
Regulatory Approval	Complex approval process for novel systems	Streamlined regulations and standardized protocols
Stability	Degradation of carriers or drug during storage	Improved formulations and shelf-life optimization
Cost-Effectiveness	High development and production costs	Economical materials and manufacturing processes
Targeting Efficiency	Inconsistent delivery to diseased tissue	Optimization of ligands and stimuli-responsive mechanisms
Long-Term Safety	Unknown long-term effects in humans	Rigorous preclinical and clinical evaluation
Technological Integration	Limited use of AI, biomaterials, personalized medicine	Incorporation of AI, novel biomaterials, personalized therapies

DISCUSSION

The recent development of the drug delivery technologies have significantly improved the efficacy and safety profile of the pharmaceutical interventions by overcoming the natural shortcomings of the traditional dosage forms [36]. Developments in the carrier of nanotechnology, the opportunity of precise-targeted delivery methods, and complex controlled-release processes have enabled an increase in drug bioavailability, site-specific therapeutic, and a significant decrease in systemic toxicity [37]. The innovations find their application specifically beneficial in the treatment of chronic and complex pathologies, where the proper and consistent pharmacotherapy is one of the key factors in the final success of the treatment [38]. Nanocarrier systems are associated with desirable pharmacokinetics and higher therapeutic indexes; however, there

remain a series of challenges associated with physicochemical stability, scalability of large-scale production, long-term safety, and regulatory approval, which hinder the general clinical implementation [39]. Similarly, highly specific and stimuli responsive delivery modalities, although presenting increased therapeutic specificity, can often be coupled with increased formulation complexity along with increased production costs [40]. Despite the fact that controlled -and sustained -release systems have strengthened the adherence of the patient by reducing dosing frequency, they still raise concerns regarding polymeric degradation kinetics and controlled dose that should be scrutinized carefully [41]. The presence of these obstacles notwithstanding, the search of non-conventional administration pathway, including transdermal and pulmonary delivery, has broadened the therapeutic context by increasing patient comfort and reducing first-pass metabolic clearance [42]. In general, long-term research that focuses on proving safety, optimization of scalability, and economic feasibility is inevitable in effective incorporation of improved systems of drug delivery into daily clinical activities [43]. It is expected that as new technological modalities and personalized medicine paradigms are incorporated, further progress will provide a push in the field, thus increasing patient outcomes [44].

CONCLUSION

Drugs delivery systems have advanced significantly to change pharmaceutical therapy, which has increased the effectiveness, safety, and adherence of drugs in patients. The development of nanotechnology based carriers, targeted delivery systems, controlled and prolonged release systems and new administration modalities have addressed many of the shortcomings of traditional modalities of delivery. The developments enable precise drug delivery, boost bioavailability, and mitigate the adverse effects of systems, especially in the therapeutic application of chronic and multifactorial diseases. Despite these advancements, the ongoing problems of scalability, long-term safety, regulatory approval, and cost-effectiveness still limit the widespread adoption of these technologies to the regular practice in clinical settings. The reduction of these impediments by interdisciplinary investigation and high-quality clinical assessment is invaluable to the admirable integration of sophisticated drug delivery systems. Overall, the current transformation and integration of new technologies, such as biomaterials and personalized medicine, is bound to greatly improve the therapeutic outcomes and improve the quality of healthcare in the whole world due to the advanced drug delivery systems.

REFERENCES

- [1]. Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. *Heliyon*. 2023 Jun 24;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488. PMID: 37416680; PMCID: PMC10320272.
- [2]. Price G, Patel DA. Drug Bioavailability. [Updated 2023 Jul 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK557852/>
- [3]. Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. *Theranostics*. 2016 Jun 7;6(9):1306-23. doi: 10.7150/thno.14858. PMID: 27375781; PMCID: PMC4924501.
- [4]. Rasekh M, Arshad MS, Ahmad Z. Advances in Drug Delivery Integrated with Regenerative Medicine: Innovations, Challenges, and Future Frontiers. *Pharmaceutics*. 2025 Apr 1;17(4):456. doi: 10.3390/pharmaceutics17040456. PMID: 40284451; PMCID: PMC12030587.
- [5]. Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. *Front Bioeng Biotechnol*. 2023 Apr 13;11:1177151. doi: 10.3389/fbioe.2023.1177151. PMID: 37122851; PMCID: PMC10133513.
- [6]. Hashmi AR, Sekar M, Zahra F, Molugulu N, Wong LS. Advanced Drug Delivery Strategies to Overcome Solubility and Permeability Challenges: Driving Biopharmaceutical Advancements Toward Commercial Success. *ACS Omega*. 2025 Aug 30;10(36):40769-40792. doi: 10.1021/acsomega.5c06171. PMID: 40978372; PMCID: PMC12444610.
- [7]. Institute of Medicine (US) Committee to Study Female Morbidity and Mortality in Sub-Saharan Africa; Howson CP, Harrison PF, Law M, editors. *In Her Lifetime: Female Morbidity and Mortality in Sub-Saharan Africa*. Washington (DC): National Academies Press (US); 1996. 7, Cardiovascular Diseases, Cancers, and Chronic Obstructive Pulmonary Diseases. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK232548/>
- [8]. Verma S, Chevvuri R, Sharma H. Nanotechnology in dentistry: Unleashing the hidden gems. *J Indian Soc Periodontol*. 2018 May-Jun;22(3):196-200. doi: 10.4103/jisp.jisp_35_18. PMID: 29962697; PMCID: PMC6009154.
- [9]. Glassman PM, Muzykantov VR. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. *J Pharmacol Exp Ther*. 2019 Sep;370(3):570-580. doi: 10.1124/jpet.119.257113. Epub 2019 Mar 5. PMID: 30837281; PMCID: PMC6806371.
- [10]. Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. *Nano Today*. 2020 Oct;34:100898. doi: 10.1016/j.nantod.2020.100898. Epub 2020 Jun 20. PMID: 32802145; PMCID: PMC7425807.

- [11]. Yan S, Na J, Liu X, Wu P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. *Pharmaceutics*. 2024 Feb 7;16(2):248. doi: 10.3390/pharmaceutics16020248. PMID: 38399302; PMCID: PMC10893104.
- [12]. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. *Molecules*. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905. PMID: 34641447; PMCID: PMC8512302.
- [13]. Bhat R, Bhandary A, Karicheri ,Palakki G, Uday M. Antibody-Drug Conjugates: Advances and Applications in Targeted Cancer Therapies. *Oral Sphere J. Dent. Health Sci.* 2025;1(2):63-72. doi: 10.63150/osjdhs.2025.3
- [14]. Pitiot A, Heuzé-Vourc'h N, Sécher T. Alternative Routes of Administration for Therapeutic Antibodies-State of the Art. *Antibodies (Basel)*. 2022 Aug 26;11(3):56. doi: 10.3390/antib11030056. PMID: 36134952; PMCID: PMC9495858.
- [15]. Driessen J, Limula H, Gadabu OJ, Gamadzi G, Chitandale E, Ben-Smith A, Alide N, Douglas GP. Informatics solutions for bridging the gap between clinical and laboratory services in a low-resource setting. *Afr J Lab Med.* 2015 Jun 11;4(1):1-7. doi: 10.4102/ajlm.v4i1.176. PMID: 38440308; PMCID: PMC10911650.
- [16]. Rodriguez-Devora JI, Ambure S, Shi ZD, Yuan Y, Sun W, Xui T. Physically facilitating drug-delivery systems. *Ther Deliv.* 2012 Jan;3(1):125-39. doi: 10.4155/tde.11.137. PMID: 22485192; PMCID: PMC3319129.
- [17]. Bashirynejad M, Soleymani F, Nikfar S, Kebriaeezadeh A, Majdzadeh R, Fatemi B, Zackery A, Zare N. Trends analysis and future study of the pharmaceutical industry field: a scoping review. *Daru.* 2024 Dec 17;33(1):6. doi: 10.1007/s40199-024-00550-x. PMID: 39688735; PMCID: PMC11652559.
- [18]. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. *Front Pharmacol.* 2021 Feb 19;12:618411. doi: 10.3389/fphar.2021.618411. PMID: 33679401; PMCID: PMC7933596.
- [19]. Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? *Int J Pharm X.* 2020 Jun 12;2:100050. doi: 10.1016/j.ijpx.2020.100050. Erratum in: *Int J Pharm X.* 2020 Dec 09;2:100065. doi: 10.1016/j.ijpx.2020.100065. PMID: 32577616; PMCID: PMC7305387.
- [20]. Ashwitha A. Shetty, Anurag Rawat, Nagashree KS, Ritik Kashwani, Anukriti Kumari, Sumana Kumar, & S.V. Dharrshne. (2023). REVITALIZING SENIOR SMILES: INVESTIGATING ORAL PROBIOTICS FOR ENHANCED HEALTH. *Journal of Population Therapeutics and Clinical Pharmacology*, 30(19), 1198-1213. <https://doi.org/10.53555/jptcp.v30i19.3760>
- [21]. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. *Int J Nanomedicine*. 2017 Oct 5;12:7291-7309. doi: 10.2147/IJN.S146315. PMID: 29042776; PMCID: PMC5634382.
- [22]. Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. *Front Nutr.* 2021 Dec 1;8:783831. doi: 10.3389/fnut.2021.783831. PMID: 34926557; PMCID: PMC8671830.
- [23]. Alberts B, Johnson A, Lewis J, et al. *Molecular Biology of the Cell*. 4th edition. New York: Garland Science; 2002. The Compartmentalization of Cells. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK26907/>
- [24]. Tarighi P, Mousavi Esfahani SM, Emamjomeh A, Mirjalili SZ, Mirzabeigi P. Optimizing Cancer Treatment: A Comprehensive Review of Active and Passive Drug Delivery Strategies. *Iran Biomed J.* 2025 Jul 1;29(4):173-188. doi: 10.61882/ibj.4960. PMID: 41048083; PMCID: PMC12584355.
- [25]. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. *Nat Rev Mater.* 2021 Apr;6(4):351-370. doi: 10.1038/s41578-020-00269-6. Epub 2021 Feb 2. PMID: 34950512; PMCID: PMC8691416.
- [26]. Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. *Pharmaceutics*. 2019 Oct 18;11(10):543. doi: 10.3390/pharmaceutics11100543. PMID: 31635367; PMCID: PMC6836276.
- [27]. Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. *Mol Clin Oncol.* 2014 Nov;2(6):904-908. doi: 10.3892/mco.2014.356. Epub 2014 Jul 23. PMID: 25279172; PMCID: PMC4179822.
- [28]. Valencia JC, Egbukichi N, Erwin-Cohen RA. Autoimmunity and Cancer, the Paradox Comorbidities Challenging Therapy in the Context of Preexisting Autoimmunity. *J Interferon Cytokine Res.* 2019 Jan;39(1):72-84. doi: 10.1089/jir.2018.0060. Epub 2018 Dec 18. PMID: 30562133; PMCID: PMC6350415.
- [29]. Gross AS. Best practice in therapeutic drug monitoring. *Br J Clin Pharmacol.* 1998 Aug;46(2):95-9. doi: 10.1046/j.1365-2125.1998.00770.x. PMID: 9723816; PMCID: PMC1873661.
- [30]. Omidian H, Wilson RL. Long-Acting Gel Formulations: Advancing Drug Delivery across Diverse Therapeutic Areas. *Pharmaceutics (Basel)*. 2024 Apr 12;17(4):493. doi: 10.3390/ph17040493. PMID: 38675454; PMCID: PMC11053897.
- [31]. Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. *Int J Mol Sci.* 2023 Jun 26;24(13):10672. doi: 10.3390/ijms241310672. PMID: 37445852; PMCID: PMC10342188.

- [32]. Kim J, De Jesus O. Medication Routes of Administration. [Updated 2023 Aug 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK568677/>
- [33]. Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. *Bioimpacts.* 2016;6(1):49-67. doi: 10.15171/bi.2016.07. Epub 2016 Mar 30. PMID: 27340624; PMCID: PMC4916551.
- [34]. Thomas R, Chalkidou K. Cost-effectiveness analysis. In: Cylus J, Papanicolas I, Smith PC, editors. *Health system efficiency: How to make measurement matter for policy and management* [Internet]. Copenhagen (Denmark): European Observatory on Health Systems and Policies; 2016. (Health Policy Series, No. 46.) 6. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK436886/>
- [35]. Schork NJ. Artificial Intelligence and Personalized Medicine. *Cancer Treat Res.* 2019;178:265-283. doi: 10.1007/978-3-030-16391-4_11. PMID: 31209850; PMCID: PMC7580505.
- [36]. Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. *Molecules.* 2016 Apr 29;21(5):559. doi: 10.3390/molecules21050559. PMID: 27136524; PMCID: PMC6273146.
- [37]. Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The Bioavailability of Drugs-The Current State of Knowledge. *Molecules.* 2023 Dec 11;28(24):8038. doi: 10.3390/molecules28248038. PMID: 38138529; PMCID: PMC10745386.
- [38]. Hammond CJ. The Role of Pharmacotherapy in the Treatment of Adolescent Substance Use Disorders. *Child Adolesc Psychiatr Clin N Am.* 2016 Oct;25(4):685-711. doi: 10.1016/j.chc.2016.05.004. Epub 2016 Aug 2. PMID: 27613346; PMCID: PMC5018301.
- [39]. Kearney B, McDermott O. The Challenges for Manufacturers of the Increased Clinical Evaluation in the European Medical Device Regulations: A Quantitative Study. *Ther InnovRegul Sci.* 2023 Jul;57(4):783-796. doi: 10.1007/s43441-023-00527-z. Epub 2023 May 17. PMID: 37198369; PMCID: PMC10276779.
- [40]. Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing - An overview. *Vaccine.* 2017 Jul 24;35(33):4064-4071. doi: 10.1016/j.vaccine.2017.06.003. Epub 2017 Jun 21. PMID: 28647170; PMCID: PMC5518734.
- [41]. Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. *Int J Mol Sci.* 2023 Aug 19;24(16):12976. doi: 10.3390/ijms241612976. PMID: 37629157; PMCID: PMC10455181.
- [42]. Herman TF, Santos C. First-Pass Effect. [Updated 2023 Nov 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK551679/>
- [43]. Di Sanzo M, Cipolloni L, Borro M, La Russa R, Santurro A, Scopetti M, Simmaco M, Frati P. Clinical Applications of Personalized Medicine: A New Paradigm and Challenge. *Curr Pharm Biotechnol.* 2017;18(3):194-203. doi: 10.2174/1389201018666170224105600. PMID: 28240172.
- [44]. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. *Fertil Steril.* 2018 Jun;109(6):952-963. doi: 10.1016/j.fertnstert.2018.05.006. PMID: 29935653; PMCID: PMC6366451.